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Reentrant Interface Depinning from Rough Walls1

G. Giugliarelli2, 3 and A. L. Stella4

Depinning of an interface from a rough self-affine wall delimiting an attractive
substrate is described in terms of directed paths on a square lattice. Short range
interactions are assumed and the phase diagram is determined by transfer
matrix methods for several values of fw, the roughness exponent of the wall.
For all fw the following scenario is observed. At a very low temperature T,, the
interface is not pinned for wall attraction energies below a certain Cw-depen-
dent, nonzero threshold. This contrasts with the case of smooth walls, for which
the threshold is zero. In a range of attraction energies just below the threshold,
a pinning transition first occurs, as T increases, followed by a depinning one
(reentrant depinning). This unusual reentrance phenomenon, in which, upon
increasing T, dewetting is followed by wetting, is peculiar of self-affine roughness
and does not occur, e.g., with a periodic substrate corrugation. The nature of
both wetting and dewetting transitions is determined by the value of {w. As
found in related work, the two transitions are both continuous or both first-
order, according to whether C w < l / 2 , or f w > l / 2 , respectively. The border
value Co = 1 /2 coincides with the intrinsic roughness of the interface in the bulk.

1. INTRODUCTION

The properties of an interface are strongly influenced by the presence of a
substrate. In wetting phenomena, for example, the interface between two
coexisting phases unbinds from an attractive substrate (wetting transition)
as the temperature is increased [ 1 ]. While wetting is rather well understood
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in pure systems, the effects of disorder [2-5] are still actively investigated.
Of particular interest is the case of geometric surface disorder (roughness)
and its effects on location and nature of wetting transitions [2],

Here we focus our attention on some effects of self-affine roughness on
the wetting phase diagram. Self-affine roughness is often encountered in
experimental samples [6]. Self-affinity implies that the average (transverse)
height fluctuation of a sample of (longitudinal) linear size X, AWX, scales
like A W x ^ X ^ . The role of this kind of roughness in both complete and
critical wetting phenomena has been investigated by several methods in
recent years [7, 8], Most recently it was found [9, 10] that self-affine
roughness changes critical wetting transitions into first-order when the sub-
strate roughness, £w, exceeds the roughness of the interface in the bulk, £0.
This is expected to hold for both ordered and disordered bulks and with
short-range substrate forces. As we show here, this change of transition
order is not the only effect of surface roughness on interface properties.
Self-affine roughness radically modifies the wetting phase diagram in a way
which can be important in experiments and applications [11].

In the present paper we study the wetting phase diagram of a general-
ization with rough wall [9] of a standard interfacial model with short
range forces in 2D [ 12]. Our results give evidence of some remarkable and
unusual features of the phase diagram, which, at a qualitative level, should
be considered as generic for wetting on self-affine rough substrates. The
most notable feature of the phase diagram is a reentrant interface depinning
in the whole range of roughnesses ( 0 < C W < 1 ) . This reentrance, which
amounts to a dewetting followed by a wetting transition as the temperature
is raised, occurs both in regimes when the transitions are continuous, and
when they are first-order.

This paper is organized as follows. In the next section we introduce the
model and describe our transfer matrix method. In Section 3 we discuss the
main results for the phase diagram. In Section 4 further general considera-
tions and conclusions are given.

2. THE MODEL

Let us consider a 2D square lattice and denote by x and y the integer
coordinates of its sites. Self-avoiding paths (partially) directed in the x
direction, like that shown in Fig. 1, are considered as possible interface
configurations. Because of the directed nature of the paths, a particular
configuration is determined by giving the ordinate y = hx of the left-hand
extremity of each one of its horizontal steps. We suppose that the substrate
wall is also represented by a directed path defined in terms of a set of step
ordinates { Wx] defined in the same way as { h x } . The impenetrable character
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Fig. 1. Example of a rough substrate wall (continuous path) and
an interface configuration (dotted path).

of the wall implies obviously that hx > Wx Moreover, we impose the
following restrictions on the sets {hx} and {H^}: (a) h x + l — h x = 0, ±1;
(b) Wx+l — Wx= +1. Such restrictions are imposed merely for computa-
tional convenience; removing or modifying them would not change the
main qualitative features of our results.

The sets { Wx] are randomly generated by an iterative algorithm [11,
13]. This algorithm produces directed paths in 2D obeying the restrictions
described above and the scaling relation,

In this equation and in the following, the overbars indicate quenched
averages over samples of { Wx}.

To each interface configuration with a projection of length X on the
x axis is associated an energy Ex,

where zx = hx-Wx and wx= Wx- W x _1 . In Eq. (2) E ( £ > 0 ) is the
energy cost of each interface step and — U (U > 0) is the energy gain of an
interface contact with the attracting wall. Only the horizontal steps of the
interface paths in contact with the wall are assigned the energy — U; this
is a particular feature of our model. This choice is not mandatory, and dif-
ferent conventions would not change the basic qualitative results.

At a finite temperature T the properties of the interface can be studied
in terms of the partition function,
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where oj = e~E/kaT and k = eu/kBT are the fugacities associated with each
(horizontal or vertical) step of the path and each horizontal step on the
wall, respectively. The sum is done over the ensemble of all the directed
paths (determined here by { z x } ) compatible with the chosen profile of the
wall. n± and nc are the number of vertical steps of the interfacial path and
the number of its horizontal steps on the wall, respectively.

The interface partition depends on the temperature T and the energies
U and S through the dimensionless parameters u = U/E, and t = kB T/S. We
refer to u and t as wall attraction strength and temperature, respectively.

Making use of the transfer matrices Tw defined as follows,

The function o0 establishes particular x = 0 conditions for the interfacial
paths. For example, for paths with the left extremity on the wall, we put
<MZ)=<SZ,<>-

A wall profile corresponds to a particular sequence of factors Tw in
the product of Eq. (5). For asymptotically large systems (x -> oo), the
partition function £x can be expressed in terms of the largest Lyapunov
eigenvalue Amax [14] of the matrix product in Eq. (5) as Lx(wAmax)x.
Useful tools for the numerical calculation of Amax are the normalized
vectors Ux defined by the recursion relation,

with \\4/x\\ = ̂ z\l/x(z),nx = HT^i/r^J and tf0 = f0. Because of the par-
ticular normalization rule, it is simple to see that the zth component of the
vector \u/x corresponds to the probability that the path at x is at a distance
z from the wall [2, 8]. This interpretation of >Ux guides our choice of \|Ux \\.
For a given wall profile, the above definitions allow to express the
Lyapunov eigenvalue Amax as

the partition function in Eq. (3) can be expressed as
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Finally, we can consider the quenched dimensionless free energy den-
sity, /, given by /= — limx-oo In &X/X. With the last definitions this can
be written as

3. WETTING PHASE DIAGRAM

The depinning transition occurs because, e.g., at a fixed temperature,
the interface remains bound to the wall only for sufficiently high values of
«. In the case of a flat wall, i.e., { Wx = constant Vx}, the value of u, uc,
above which the interface is pinned has been calculated exactly [15, 12, 2].
The exact formulas can be used to write the wall critical attraction
strength, at which the interface depinning takes place, in the form,

from which one can see that lim t -0 uc(t) = 0. On the other hand, if we
denote by P0 the average fraction of horizontal interface steps on the wall,
P0 = l i m x _ a ( n c ) / X , with brackets indicating canonical thermal average;
from the same formulas one can see that P0 vanishes continuously and
linearly in u — uc when the line u = u c ( t ) is approached from above.

When dealing with random walls, the calculation of f or P0 for each
particular { Wx } can be done only numerically. To minimize finite size
effects due to truncations of the transfer matrices, in our calculations we
always considered matrix sizes much larger than the mean square per-
pendicular width of the self-affine walls. In practice we used transfer
matrices as large as 10 4 x10 4 in the roughest case, corresponding to
Cw = In 12/ln 32 =± 0.717. With this roughness X= 105 was reached. In_addi-
tion, one has to average over different { Wx] in order to get f and P0. We
could sample at most 10 or 15 { Wx } in the most favorable cases, due to
the large A"s needed to extract precisely f and P0.

At fixed t, as the transition is approached from above [viz., w > w c ( r ) ] ,
the interface free energy density [Eq. (8)] is negative and increasing, with
decreasing u\ at u = uc(t) it matches the bulk interface free energy density
Auik = — In w( 1 + 2w). Thus, the depinning transition can be located where
the interface excess free energy Af = f—fb u l k vanishes. The calculation of
P0 offers an alternative way of locating the transition, by identifying the
conditions under which this quantity first becomes zero.

Once the free energy / and P0 had been obtained for a sufficient num-
ber of wall profiles, we evaluated both f and P0. We could observe that
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both quantities can be used to locate the transition with approximately the
same precision. A careful numerical study of how p0 or Af approach zero
gave us further information on whether the transition is continuous or first-
order [9].

Figure 2 summarizes the results we have obtained by a systematic
calculation of f as a function of t and u, for five values of £w. The curves
in the figure represent the behavior of uc versus t. uc was determined
numerically as the value of u below which \Af\ ^0.0001 as u was changed
in steps of 0.001.

Looking at the transition curves for rough walls in Fig. 2, we note two
main differences from the flat case.

(a) For all c w , u c ( t ) is positive and finite. As t - 0 the minimal
attraction strength needed to pin an interface, wc(0), is finite and
increases as the wall roughness £w increases.

Fig. 2. Interface phase diagram for rough self-
affine walls in the t-u plane. The curves u = u c ( t ) are
shown for five values of the roughness exponent £w.
The light continuous line corresponds to W = MC(;)
for a flat wall as given by Eq. (9). The light dashed
line gives a qualitative idea of the dependence of (R

on fw.



(b) All the curves u = uc(t) present a minimum at tR. As a conse-
quence, there is a temperature interval in which uc is a decreasing
function of t.

The minimum in the transition lines is responsible for a remarkable
reentrance effect. In fact, let us focus our attention on one of the u = uc(t)
lines in Fig. 2. As in an experiment, the interface behavior can be
monitored at fixed u, by varying t. We identify three regimes

(1) For u < UC(tR) interface pinning is impossible, no matter how low
t is.

(2) For MC ( /R) < M < w c ( 0 ) as the temperature is increased, the inter-
face undergoes two transitions: (i) at an effective temperature
tD< tR, we find an unexpected pinning transition—the substrate
is wet for t <tD and dewets at t = t0; and (ii) at some tw > tR a
more usual depinning (wetting) transition follows.

(3) For u > uc(0) as the temperature is increased, the interface passes
from a pinned to a depinned state at some tw.

A detailed study of the behavior of tR for Cw approaching zero is not
feasible due to the necessity of generating extremely long walls in order to
distinguish very low from strictly zero roughness. The same calculations for
Cw approaching 1 are again very time-consuming mainly because of the
large dimension of the transfer matrices required to avoid finite size effects.
However, our results suggest rather clearly that tR approaches zero for
both Cw ~> 0 and Cw ~> 1 • Thus, in these two limits the reentrance disap-
pears. In Fig. 2 we draw a line which joins the points (tR , W ( t R ) ) of our
curves with (0, 0) and (0, 1). This line should give a qualitative idea of the
dependence of tR on Cw

Another interesting aspect of the phase diagram is that connected to
the nature of the transitions involved. The continuous or discontinuous
character of the wetting transitions upon varying Cw was discussed in
Ref. 9 by analyzing the way in which P0 approaches zero for u -»uC(t)+.
While in this work we focus our attention mainly on the wetting phase
diagram, we made also a study of the nature of the reentrant dewetting
transition for two Cw values, respectively, below and above Cw = 1/2. In the
first case (Cw = 0.4) we found evidence of a continuous depinning, while in
the latter (Cw = 0.6) it appeared discontinuous. These results are in agree-
ment with those of Ref. 9 for wetting transitions, and suggest that also for
dewetting fw= 1/2 could be the border line roughness between continuous
and discontinuous depinning.
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4. CONCLUSIONS

The results presented in the previous section are worth discussing
further.

At t = 0, in order to decide whether the interface is pinned or not, we
need only to compare the ground state energy in the bulk with the lowest
energy of a state in which the interface is bound to the substrate. In the
bulk, the state of lowest possible energy is clearly given by a straight con-
figuration (n_ = 0). A bound state will have an energy relative to this
unbound ground state equal to En_,_ — Unc. nc and nc depend, of course, on
the wall configuration to which this bound state refers. Clearly w c(0) is
determined by the condition under which this energy difference between the
two states vanishes: u c (0) = l im x_ a on± /n c . The fact that bound ground
state configurations satisfy this limit condition with uc(0) >0 is a nontrivial
property of self-affine substrates. On a periodically corrugated substrate
with average horizontal slope, this limit property would not be satisfied. In
this case, for u very close to zero, the bound ground state configuration is
one in which nx = 0, corresponding to a straight interface touching the
attractive tips of the periodically corrugated wall. Thus, we would have
«x = 0 and n c = 0 , and, consequently, uc(0) = 0, as in a flat case. We con-
clude that a remarkable property of self-affine substrates is that they can
support ground state interface configurations with limx_xn^/nc>0.

We also verified, by explicit calculations for simple periodically
corrugated walls, that MC is always an increasing function of t, contrary to
what happens in the self-affine case. Indeed, a remarkable property of self-
affine substrates, for which w c(0) > 0 is clearly a necessary but not sufficient
condition, is the monotonically decreasing character of the curve u = uc(t)
in the interval (0, tR). This feature implies that, as soon as t rises above
zero, an interface can be more easily bound to the rough substrate. This
clearly shows that there is a very nontrivial energy-entropy interplay in the
pinning mechanism when self-affine roughness is involved.

The calculations we presented in this work have been limited to 2D
and to strictly short range forces. For the moment the extension of these
calculations to 3D is computationally unfeasible, and even the inclusion of
long-range potentials would pose serious additional difficulties in our
calculations. However, in 3D we expect that the main features of the phase
diagram would persist. Concerning the effect of long-range forces, which
should certainly be included in more realistic calculations to compare with
experiments, we can only conjecture that they would not modify the main
result obtained here, i.e., the reentrance. However, there is at least one
experimental system, namely interfaces in superconductors [16], for which
a short-range description should be fully adequate.
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